SLAM (Simultaneous Localization and Mapping ,即时定位与地图构建),是机器人通过对各种传感器数据进行采集和计算,生 成对其自身位置姿态的定位和场景地图信息的系统。SLAM技术对于机器人的运动和交互能力十分关键。
SLAM系统通常包含多种传感器和多种功能模块。按照核心的功能模块区分,目前常见的机器人SLAM系统可分为两种形式:基于激 光雷达的SLAM(激光SLAM)和基于视觉的SLAM(V-SLAM)。激光SLAM目前发展比较成熟、应用广泛,未来多传感器融合的SLAM 技术将逐渐成为技术趋势,取长补短,更好地实现定位导航。
摘自:《2020服务机器人产业发展研究报告》
SLAM阶段:解决从原始传感器数据开始,构建某种基础地图的过程,标注阶段:在SLAM结果基础上进行人为标注,实现更精细的交通规则控制
图像检索是计算机视觉中基础的应用,可分为文字搜图和以图搜图。借助于卷积神经网络CNN强大的建模能力,图像检索的精度越发提高
数据所有权方面,1原始数据属于个人,2企业享有衍生数据所有权,3政府享有政府数据的归属权
脑科学的发展将推动人工智能科学从感知人工智能到认知人工智能的跨越
机械手面临的难点在于如何在柔性物体上施加可控的挤压力,以及在非稳定状况下确保精确、稳健的抓握与柔性指端操控
DFN模型综合使用了用户的隐式正反馈(点击行为)、隐式负反馈(曝光但未点击的行为)以及显式负反馈(点击不感兴趣按钮行为)等信息
软体机械手充分利用和发挥各种柔性材料的柔顺性,及其非线性、粘弹性和迟滞特性等在软体手运动和控制中潜在的“机械智能”作用,降低控制的复杂度,实现高灵活性、强适应性和良好交互性,在医疗康复领域有重要应用价值
智能客服系统中人机结合的服务形式,从五个维度总结和介绍情感分析技术在智能客服系统中的应用场景,包括情感分析算法模型的原理及实际落地使用方式和效果分析
AI人工智能技术需要构建强有力的IT基础设施,人工智能的工作主要由采集、准备、训练和推理四部分组成,每个部分需要读写不同类型的数据,工作负载也不尽相同,将给存储设备带来较大的挑战。
基于梯度反向传播的脉冲神经网络(SNN)训练方法逐渐兴起。在这种训练方法下,SNN能够在保留神经元内部动力学的同时获得较好的性能
Cartographer跨平台和传感器配置,MC2SLAM实时激光里程计系统,LeGO-LOAM种轻量级和地面优化的激光雷达里程计和建图方法,SUMA++开源的基于语义信息的激光雷达SLAM系统
人工智能为什么会产生“灾难性遗忘”?目前,解决灾难性遗忘的方案有哪些?难点在哪?来看看专家怎么说