6月10日,腾讯优图实验室宣布正式开源新一代移动端深度学习推理框架TNN,通过底层技术优化实现在多个不同平台的轻量部署落地,性能优异、简单易用。腾讯方面称,基于TNN,开发者能够轻松将深度学习算法移植到手机端G效的执行,开发出人工智能 App,真正将 AI 带到指尖。
GitHub链接:
https://github.com/Tencent/TNN
轻量J部署,TNN助力深度学习提速增效
深度学习对算力的巨大需求一直制约着其更广泛的落地,尤其是在移动端,由于手机处理器性能弱、算力无法多机拓展、运算耗时长等因素常常导致发热和G功耗,直接影响到App等应用的用户体验。腾讯优图基于自身在深度学习方面的技术积累,并借鉴业内主流框架优点,推出了针对手机端的G性能、轻量J移动端推理框架TNN。
TNN在设计之初便将移动端G性能融入核心理念,对2017年开源的ncnn框架进行了重构升J。通过GPU深度调优、ARM SIMD深入汇编指令调优、低精度计算等技术手段,在性能上取得了进一步提升。以下是MNN, ncnn, TNN框架在多款主流平台的实测性能:

达摩院金榕教授介绍了语音、自然语言处理、计算机视觉三大核心AI技术的关键进展,并就AI技术在在实际应用中的关键挑战,以及达摩院应对挑战的创新实践进行了解读
2020年5月底OpenAI发布了有史以来最强的NLP预训练模型GPT-3,最大的GPT-3模型参数达到了1750亿个参数
解决了传统图卷积神经网络中图节点学习到的特征对图分辨率和连接关系敏感的问题,可以实现在低分辨率的三维形状上学习特征,在高低分辨率形状之上进行测试,并且保持不同分辨率特征的一致性
外卖履约时间预估模型,预估的是从用户下单开始到骑手将餐品送达用户手中所花的时间
记忆增强的图神经网络对短期的商品语境信息建模,并使用共享的记忆网络来捕捉商品之间的长期依赖,对多个模型进行了对比,在Top-K序列推荐中效果极佳
马库斯系统性地阐述了对当前AI研究界的批判,从认识科学领域中针对性地给出了11条可执行的建议
MIS 和RMIS触觉传感器最常用的传感原理是基于电气的传感器。这些触觉传感器进一步分为压阻型、压电型和电容型传感器
应用于MIS的触觉传感器主要是基于电学或光学原理开发的,应该是小尺寸和圆柱形的,可在导管的管身或尖端集成
非接触式检测平台FluSense由麦克风阵列和热成像摄像机组成,用于捕捉不同的候诊室人群行为,包括咳嗽和语言活动以及候诊室病人数量
通过机械机构实现机械手到工具的动力传递,无需外部控制及供能,对机器人的避障路径规划影响极小
神经网络的敏感性分析方法可以分为变量敏感性分析、样本敏感性分析两种,变量敏感性分析用来检验输入属性变量对模型的影响程度,样本敏感性分析用来研究具体样本对模型的重要程度
神经网络模型本身其实并不是一个黑箱,其黑箱性在于摩登7没办法用人类可以理解的方式理解模型的具体含义和行为