AI新算法让马赛克图秒变高清,模糊图片一键变高清[杜克大学]-www.cqhaiergw.com

首页
摩登7产品
行业应用
渠道合作
摩登7新闻
研究院
投资者关系
技术支持
关于摩登7
|
 
  当前位置:首页 > 新闻资讯 > 机器人开发 > 拯救渣画质,马赛克图秒变高清,杜克大学提出AI新算法  
 

拯救渣画质,马赛克图秒变高清,杜克大学提出AI新算法

来源:AI科技大本营      编辑:摩登7      时间:2020/6/17      主题:其他   [加盟]

杜克大学的研究人员提出了一种 AI 算法,称之为 PULSE(Photo Upsampling via Latent Space Exploration,通过潜在空间探索的照片上采样)。 

该算法可以将模糊、无法识别的人脸图像转换成计算机生成的图像,其细节比之前任何时候都更加精细、逼真。






饿了么推荐算法的演进及在线学习实践

饿了么算法专家刘金介绍推荐业务背景,包括推荐产品形态及算法优化目标;然后是算法的演进路线;最后重点介绍在线学习是如何在饿了么推荐领域实践的

百变应用场景下,优酷基于图执行引擎的算法服务框架筑造之路

优酷推荐业务,算法应用场景众多,需求灵活多变,需要一套通用业务框架,支持运行时的算法流程的装配,提升算法服务场景搭建的效率

内容流量管理的关键技术:多任务保量优化算法实践

通过分析其中的关键问题,建立了新热内容曝光敏感模型,并最终给出一种曝光资源约束下的多目标优化保量框架与算法

CVPOS自助收银的挑战以及商品识别算法工程落地方法和经验

针对结算收银场景中商品识别的难点,从商品识别落地中的模型选择、数据挑选与标注、前端和云端部署、模型改进等方面,进行了深入讲解

面向动态记忆和学习功能的神经电晶体可塑性研究

神经形态结构融合学习和记忆功能领域的研究主要集中在人工突触的可塑性方面,同时神经元膜的固有可塑性在神经形态信息处理的实现中也很重要

人工智能和机器学习之间的差异及其重要性

机器学习就是通过经验来寻找它学习的模式,而人工智能是利用经验来获取知识和技能,并将这些知识应用于新的环境

滴滴机器学习平台调度系统的演进与K8s二次开发

滴滴机器学习场景下的 k8s 落地实践与二次开发的技术实践与经验,包括平台稳定性、易用性、利用率、平台 k8s 版本升级与二次开发等内容

如何更高效地压缩时序数据?基于深度强化学习的探索

大型商用时序数据压缩的特性,提出了一种新的算法,分享用深度强化学习进行数据压缩的研究探索

基于深度学习目标检测模型优缺点对比

深度学习模型:OverFeat、R-CNN、SPP-Net、Fast、R-CNN、Faster、R-CNN、R-FCN、Mask、R-CNN、YOLO、SSD、YOLOv2、416、DSOD300、R-SSD

传统目标检测算法对比

SIFT、PCA-SIFT、SURF 、ORB、 VJ 等目标检测算法优缺点对比及使用场合比较

基于深度学习和传统算法的人体姿态估计,技术细节都讲清楚了

人体姿态估计便是计算机视觉领域现有的热点问题,其主要任务是让机器自动地检测场景中的人“在哪里”和理解人在“干什么”

让大规模深度学习训练线性加速、性能无损,基于BMUF的Adam优化器并行化实践

Adam 算法便以其卓越的性能风靡深度学习领域,该算法通常与同步随机梯度技术相结合,采用数据并行的方式在多台机器上执行
 
资料获取
新闻资讯
== 资讯 ==
» 机器人的自由度,直接影响到机器人的机动性
» 机器人系统的结构:机械手、环境、任务 和
» 2025年智能焊接机器人产业发展蓝皮书:
» 商用服务机器人控制系统的组成:任务规划,
» 具身智能工业场景,精准、重复的任务流程成
» 智能机器人的传感器的种类:内部传 感器和
» 前台智能机器人对传感器的要求:基本性能要
» 各地对具身智能核心发展需求:产业端落地,
» 2025年中国具身智能产业发展规划与场景
» 按控制方式进行分类,机器人分为二种:非伺
» 按机械手的几何结构进行分类,机器人分为三
» 智能安防巡检机器人的起源与发展历史,De
» 智能交互机器人的主要部件选型参考方案:伺
» 智能接待机器人的关节机构设计方案参考:运
» 智能接待机器人机构设计模型分析:机器人运
 
== 机器人推荐 ==
 
迎宾讲解服务机器人

服务机器人(迎宾、讲解、导诊...)

 

                              消毒机器人排名        移动消毒机器人        导览机器人         
版权所有 © 摩登7智能机器人集团股份有限公司     中国运营中心:上海·科技园8号楼5层     中国生产中心:山东日照解放路71号
销售1:4006-935-088    销售2:4006-937-088   客服电话: 4008-128-728